Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Eur J Pharmacol ; 956: 175944, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37536627

RESUMO

Although multiple mechanisms have been studied, there is still a lack of effective treatment on non-motor symptoms in Parkinson's disease (PD) patients. Therapeutic effects of 5-(4-hydroxy-3-dimethoxybenzylidene)-thiazolidinone (RD-1), one of rhodamine derivatives, on motor recovery have been previously demonstrated, but its effects on non-motor symptoms remain unclear. Herein, we explored the beneficial effects of RD-1 on PD-related non-motor symptoms and changes in synaptic plasticity in the mesencephalon. To investigate its therapeutic effects in the non-motor symptoms of Parkinsonian model, we employed male C57BL/6N mice and double injection with noradrenergic specific neurotoxin N-2-Chloroethyl-N-ethyl-2-bromobenzylamine hydrochloride, followed 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Next, we performed behavioral tests, histological analyses and immunoblotting. Our findings showed that RD-1 significantly alleviated locomotor abnormality, motor disturbance, anxiety/depression-like behavior and memory deficit. It rescued the levels of tyrosine hydroxylase in substantia nigra, and striatum. Moreover, RD-1 upregulated expression levels of α-synuclein, synapsin II, postsynaptic density 95 and vesicle-associated membrane protein 2. The restoration of synaptic function may underlie the neuroprotective effects of RD-1 in double lesioned mice, confirming its protective effect for dopaminergic neurodegeneration.


Assuntos
Neurotoxinas , Doença de Parkinson , Camundongos , Masculino , Animais , Locus Cerúleo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Camundongos Endogâmicos C57BL , Substância Negra , Doença de Parkinson/tratamento farmacológico , Tirosina 3-Mono-Oxigenase/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos
2.
Behav Pharmacol ; 34(1): 68-77, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36730023

RESUMO

Our previous study demonstrated that 5-(4-hydroxy-3-dimethoxybenzylidene)-thiazolidinone (RD-1), one of rhodamine derivatives, significantly improves motor function in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice model and could minimize mitochondrial impairment, which is a potential therapeutic target to slow down the dopaminergic neurodegeneration in Parkinson's disease. To further evaluate its therapeutic and antioxidative potential in Parkinson's disease, the current study was designed to explore the effect of RD-1 on hemiparkinsonian rats following unilateral 6-hydroxydopamine lesions. Motor functional behavioral tests, including apomorphine-induced rotational analysis and beam walking tests, were assessed. Our results showed that oral RD-1 administration for 2 weeks alleviated beam walking disability, but not the rotational behavior. Furthermore, compared to the sham group, tyrosine hydroxylase- (TH-) positive neurons in the substantia nigra pars compacta and fibers in the striatum were significantly preserved in the RD-1 treatment group. The abnormal activities of superoxide dismutase, catalase, and glutathione peroxidase and contents of MDA were evidently ameliorated by RD-1, at least partly. We conclude that RD-1 could improve motor functions and alleviate the loss of dopaminergic expression in the nigrostriatal pathway of Parkinson's disease rats, and the protective mechanism of RD-1 against neurodegeneration was possibly via its modulation of antioxidation.


Assuntos
Doença de Parkinson , Animais , Ratos , Antioxidantes/farmacologia , Apomorfina/farmacologia , Corpo Estriado , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos , Oxidopamina/farmacologia , Doença de Parkinson/metabolismo , Substância Negra , Tirosina 3-Mono-Oxigenase/metabolismo
3.
Sci Rep ; 13(1): 2735, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792675

RESUMO

Fritillaria Cirrhosa Bulbus (known as chuanbeimu in Chinese, FCB) is one of the most used Chinese medicines for lung disease. However, a variety of substitutes have entered the market, with Fritillaria Pallidiflora Bulbus (FPB) being the most common. Due to their similarity in appearance, morphology, and chemical composition but a large price difference, the FCB has frequently been adulterated with the FPB, posing a serious challenge to the distinction and quality of the FCB. Therefore, we aimed to distinguish FCB and FPB based on their main nine isosteroidal alkaloid contents and test the potential of chemometrics as a discrimination approach for evaluating quality. The nine major isosteroidal alkaloids were measured using a liquid chromatography with tandem mass spectrometry (LC-MS/MS) approach in 41 batches of FCB and 17 batches of FPB. Additionally, they were categorized and distinguished using the methods of hierarchical cluster analysis (HCA) and principal component analysis (PCA). Quantitative analysis revealed that the nine alkaloids were present in different amounts in the two types of Fritillariae bulbus. In FCB, the highest amount was peimisine (17.92-123.53 µg/g) and the lowest was delavine (0.42-29.18 µg/g), while in FPB, imperialine was higher (78.05-344.09 µg/g), but verticinone and verticine were less than the other seven alkaloids. The FCB and FPB were successfully classified and distinguished by the HCA and PCA. Taken together, the method has a good linear relationship (R2 > 0.9975). The LOD and LOQ of the nine alkaloids were in the range of 0.0651-0.6510 and 0.1953-1.9531 ng/mL, respectively. The intra- and inter-day precision were shown to be excellent, with relative standard deviations (RSDs) below 1.63% and 2.39%, respectively. The LC-MS/MS method in conjunction with HCA and PCA can effectively differentiate FCB and FPB. It may be a promising strategy for quality evaluation and control at the FCB.


Assuntos
Alcaloides , Fritillaria , Fritillaria/química , Cromatografia Líquida , Espectrometria de Massas em Tandem , Análise de Componente Principal , Alcaloides/química , Análise por Conglomerados
4.
Oncol Lett ; 25(1): 31, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36589663

RESUMO

Numerous studies have shown that the release of stress hormones resulting from repeated exposure to chronic psychological stress increases DNA damage and promotes tumorigenesis. However, the mechanisms that enable cancerous cells adapt to stress hormone-induced DNA damage and survive remain unclear. The present study aimed to investigate the impact of stress hormones on the survival of liver cancer cells and the underlying mechanism. HepG2 human liver cancer cells were treated with dexamethasone (DEX), epinephrine (EPI) and norepinephrine (NE) and subjected to the testing of DNA damage, cell survival and cell apoptosis by alkaline comet assay, CCK-8 viability assay and flow cytometry, respectively. The protein expression levels of DNA damage response factors were determined by western blotting analysis. The results revealed that treatment of HepG2 cells with DEX, EPI and NE induced DNA damage without affecting cell survival or inducing apoptosis. The protein levels of wild-type p53-induced phosphatase 1 (Wip1), a type 2C family serine/threonine phosphatase, were increased, and the dephosphorylation of DNA damage response factors, including phosphorylated (p-)ataxia-telangiectasia mutated and p-checkpoint kinase 2, occurred following treatment with DEX, EPI and NE. In addition, a cycloheximide chase assay was performed to explore the protein stability under treatment with stress hormones. Compared with vehicle-treated cells, Wip1 exhibited increased protein stability in stress hormone-treated HepG2 cells. Eventually, the depletion of Wip1 using small interfering RNA verified the role of Wip1 in the modulation of stress hormone-induced DNA damage. These findings suggest that cancerous cells likely adapt to stress hormone-induced DNA damage via Wip1 upregulation. The present study provides an insight into the underlying mechanism that links chronic psychological stress with tumor growth and progression.

5.
Am J Cancer Res ; 12(11): 5286-5299, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504904

RESUMO

Chronic stress induces cancer initiation and progression via regulation of diverse cancer risk factors including immune evasion. Our previous research demonstrated that ß-adrenergic blockade with propranolol almost completely reversed the accelerated tumor growth induced by chronic restraint stress, but the underlying mechanism of immune escape remains largely unknown. In the present study, a chronic restraint stress paradigm was applied to the H22 hepatocellular carcinoma (HCC) bearing mice to mimic the psychological stress. We observed that chronic restraint stress significantly promoted HCC growth and tumor escape from T cell surveillance. Chronic restraint stress reduced intratumor MHC-I expression and enhanced PD-L1 expression, whereas propranolol rectified the changes of MHC-I and PD-L1. Under chronic stress, the activated MAPK pathway suppressed MHC-I production by inactivating STAT1/IRF1 signaling pathway, and promoted PD-L1 translation by elevating eIF2α phosphorylation. These findings support the crucial role of ß-adrenergic signaling cascade in the tumor escape from T cell surveillance under chronic restraint stress.

6.
Exp Hematol Oncol ; 11(1): 93, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348391

RESUMO

Cancer is one of the leading causes of death worldwide due to high heterogeneity. Although chemotherapy remains the mainstay of cancer therapy, non-selective toxicity and drug resistance of mono-chemotherapy incur broad criticisms. Subsequently, various combination strategies have been developed to improve clinical efficacy, also known as cocktail therapy. However, conventional "cocktail administration" is just passable, due to the potential toxicities to normal tissues and unsatisfactory synergistic effects, especially for the combined drugs with different pharmacokinetic properties. The drug conjugates through coupling the conventional chemotherapeutics to a carrier (such as antibody and peptide) provide an alternative strategy to improve therapeutic efficacy and simultaneously reduce the unspecific toxicities, by virtue of the advantages of highly specific targeting ability and potent killing effect. Although 14 antibody-drug conjugates (ADCs) have been approved worldwide and more are being investigated in clinical trials so far, several limitations have been disclosed during clinical application. Compared with ADCs, peptide-drug conjugates (PDCs) possess several advantages, including easy industrial synthesis, low cost, high tissue penetration and fast clearance. So far, only a handful of PDCs have been approved, highlighting tremendous development potential. Herein, we discuss the progress and pitfalls in the development of ADCs and underline what can learn from ADCs for the better construction of PDCs in the future.

7.
Front Pharmacol ; 13: 925828, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873551

RESUMO

Healthy sleep is vital to maintaining the body's homeostasis. With the development of modern society, sleep disorder has gradually become one of the most epidemic health problems worldwide. Shumian capsule (SMC), a kind of traditional Chinese medicine (TCM) commonly used for insomnia, exhibits antidepressant and sedative effects in clinical practice. However, the underlying mechanisms have not been fully clarified. With the aid of a network pharmacology approach and function enrichment analysis, we identified the involvement of melatonin receptors in the antidepressant and sedative effects of SMC. In sleep-deprived mice, SMC treatment significantly alleviated insomnia and relevant mental alterations by improving both sleep latency and sleep duration. However, ramelteon, a selective melatonin receptor agonist that has been approved for the treatment of insomnia, only improved sleep latency. Additionally, SMC exhibited comparable effects on mental alterations with ramelteon as determined by an open-field test (OFT) and forced swimming test (FST). Mechanistically, we revealed that the melatonin receptor MT1 and MT2 signaling pathways involved the therapeutic effects of SMC. In addition to the single effect of traditional melatonin receptor agonists on treating sleep onset insomnia, SMC had therapeutic potential for various sleep disorders, such as sleep onset insomnia and sleep maintenance insomnia. Convergingly, our findings provide theoretical support for the clinical application of SMC.

8.
J Hematol Oncol ; 15(1): 73, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35659720

RESUMO

Despite tremendous success of molecular targeted therapy together with immunotherapy, only a small subset of patients can benefit from them. Chemotherapy remains the mainstay treatment for most of tumors including non-small cell lung cancer (NSCLC); however, non-selective adverse effects on healthy tissues and secondary resistance are the main obstacles. Meanwhile, the quiescent or dormant cancer stem-like cells (CSLCs) are resistant to antimitotic chemoradiotherapy. Complete remission can only be realized when both proliferative cancer cells and quiescent cancer stem cells are targeted. In the present research, we constructed a cooperatively combating conjugate (DTX-P7) composed of docetaxel (DTX) and a heptapeptide (P7), which specifically binds to cell surface Hsp90, and assessed the anti-tumor effects of DTX-P7 on non-small cell lung cancer. DTX-P7 preferentially suppressed tumor growth compared with DTX in vivo with a favorable distribution to tumor tissues and long circulation half-life. Furthermore, we revealed a distinctive mechanism whereby DTX-P7 induced unfolded protein response and eventually promoted apoptosis. More importantly, we found that DTX-P7 promoted cell cycle reentry of slow-proliferating CSLCs and subsequently killed them, exhibiting a "proliferate to kill" pattern. Collecitvely, by force of active targeting delivery of DTX via membrane-bound Hsp90, DTX-P7 induces unfolded protein response and subsequent apoptosis by degrading Hsp90, meanwhile awakens and kills the dormant cancer stem cells. Thus, DTX-P7 deserves further development as a promising anticancer therapeutic for treatment of various membrane-harboring Hsp90 cancer types.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Docetaxel/química , Docetaxel/farmacologia , Portadores de Fármacos/química , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/uso terapêutico
9.
Molecules ; 28(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36615220

RESUMO

Peroxo-heteropoly compound PO4[W(O)(O2)2] was synthesized on calcium-deficient hydroxyapatite using a reaction of surface [HPO4]2- groups on hydroxyapatite with a Na2[W2O3(O2)4] aqueous solution. The vibration of [HPO4]2- at 875 cm-1 became very weak, and the vibration of the peroxo-oxygen bond [O-O]2- at 845 cm-1 appeared in the FT-IR spectrum of the solid product, indicating that PO4[W(O)(O2)2] was formed on the surface of hydroxyapatite. The formed solid sample was further reacted with PdCl2(PhCN)2 in an acetone solution to fix PdCl2 between the O sites on the hydroxyapatite. Elemental analyses proved that the resultant solid contained 1.2 wt.% Pd, implying that PdCl2 molecules were immobilized on the surface of hydroxyapatite. The hydroxyapatite-based hybrid compound containing Pd and PO4[W(O)(O2)2] was used as a heterogeneous catalyst in a methanol solvent for propylene epoxidation by molecular oxygen in an autoclave batch reaction system. A propylene conversion of 53.4% and a selectivity for propylene oxide of 88.7% were obtained over the solid catalyst after reaction at 363 K for 8 h. The novel catalyst could be reused by a simple centrifugal separation, and the yield of propylene oxide did not decrease after the reaction for five runs. By prolonging the reaction time to 13 h, the highest yield of propylene oxide at 363 K over the solid catalyst was obtained as 53.8%, which was almost the same as that of the homogeneous catalyst containing PdCl2(PhCN)2 and [(C6H13)4N]2{HPO4[W(O)(O2)2]2} for the propylene epoxidation. Methanol was used as a solvent as well as a reducing agent in the propylene epoxidation by molecular oxygen. Small particles of Pd metal were formed on the surface of the hybrid solid catalyst during the reaction, and acted as active species to achieve the catalytic turnover of PO4[W(O)(O2)2] in the propylene epoxidation by molecular oxygen in methanol.


Assuntos
Metanol , Paládio , Paládio/química , Durapatita , Espectroscopia de Infravermelho com Transformada de Fourier , Oxigênio/química , Solventes
11.
Int J Cancer ; 149(2): 460-472, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33751565

RESUMO

Myeloid-derived suppressor cells (MDSCs) play an important role in tumor immune escape. Recent studies have shown that MDSCs contribute to tumor progression under psychological stress, but the underlying mechanism of MDSCs mobilization and recruitment remains largely unknown. In the present study, a chronic restraint stress paradigm was applied to the H22 hepatocellular carcinoma (HCC) bearing mice to mimic the psychological stress. We observed that chronic restraint stress significantly promoted HCC growth, as well as the mobilization of MDSCs to spleen and tumor sites from bone marrow. Meanwhile, chronic restraint stress enhanced the expression of C-X-C motif chemokine receptor 2 (CXCR2) and pErk1/2 in bone marrow MDSCs, together with elevated chemokine (C-X-C motif) ligand 5 (CXCL5) expression in tumor tissues. In vitro, the treatments of MDSCs with epinephrine (EPI) and norepinephrine (NE) but not corticosterone (CORT)-treated H22 conditioned medium obviously inhibited T-cell proliferation, as well as enhanced CXCR2 expression and extracellular signal-regulated kinase (Erk) phosphorylation. In vivo, ß-adrenergic blockade with propranolol almost completely reversed the accelerated tumor growth induced by chronic restraint stress and inactivated CXCL5-CXCR2-Erk signaling pathway. Our findings support the crucial role of ß-adrenergic signaling cascade in the mobilization and recruitment of MDSCs under chronic restraint stress.


Assuntos
Antagonistas Adrenérgicos beta/administração & dosagem , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Células Supressoras Mieloides/metabolismo , Propranolol/administração & dosagem , Estresse Psicológico/complicações , Antagonistas Adrenérgicos beta/farmacologia , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Quimiocina CXCL5 , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Células Supressoras Mieloides/efeitos dos fármacos , Transplante de Neoplasias , Propranolol/farmacologia , Receptores de Interleucina-8B , Baço/imunologia , Estresse Psicológico/etiologia , Estresse Psicológico/metabolismo
12.
Gene ; 769: 145201, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33035617

RESUMO

Single nucleotide polymorphism (SNP) has recently become one of the ideal genetic markers. SNP refers to the DNA sequence polymorphism caused by double nucleotide variation in the genome, including the conversion or transversion of segmented bases. The synthesis and metabolism of triglycerides are related to the changes of energy in the body of livestock, which in turn affects their growth and development. Studies have shown that MOGAT1 gene plays a role in the route of triglyceride synthesis. PCR-RFLP and agarose gel electrophoresis technology were used to type the SNP site of MOGAT1 gene at g.25940T > C in this study. Association analysis between typing results and growth trait data was detected by SPSS 20.0 software. Results show that MOGAT1 gene was in a low level of heterozygosity in Xianan, Qinchuan and Pinan cattle population (0 < PIC < 0.25), and in middle level of heterozygosity in YL cattle population(0.25 < PIC < 0.5). And genotype 'AA' was dominant gene in Chinese cattle population. In QC and XN cattle, genotype of GG possess advantage on Body weight (P < 0.05); in YL cattle, individuals with genotype of homozygous mutation decreased significantly on Chest depth (P < 0.05). The purpose of this research is to provide theoretical materials for molecular breeding of yellow cattle and to promote the process of improving the growth traits of Chinese local yellow cattle.


Assuntos
Aciltransferases/genética , Bovinos/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único , Animais , Bovinos/genética , Feminino , Marcadores Genéticos , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Seleção Artificial
14.
Basic Clin Pharmacol Toxicol ; 127(5): 380-388, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32511877

RESUMO

Piper laetispicum C. DC is one of the Chinese herbal medicines used for alleviating depressive disorders. G11-5 [3-(3, 4-methylenedioxy-5-trifluoromethyl phenyl)-2E-propenoic acid isobutyl amide] is synthesized based on the chemical structure of an active integrant of Piper laetispicum C. DC. The present study assessed the antidepressant effect of G11-5 and investigated the underlying mechanism with learned helplessness (LH) and social defeat stress (SDS) mice model of depression. In the LH model, mice were exposed to 60 inescapable electric shocks once a day for three consecutive days followed by 2-week drug administration and helpless behaviour assessment. In the SDS model, mice were subjected to repeated social defeat by an aggressive CD-1 mouse once a day for consecutive 10 days. Following oral administration for 2 weeks, the mice were subjected to a series of behavioural tests including social interaction test. G11-5 significantly decreased the number of escape failures induced by LH paradigm, meanwhile increased the social interaction ratio and shortened the immobility time in forced swimming test for the SDS-exposed mice, suggesting remarkable antidepressant effect. Moreover, G11-5 ameliorated the changes in mitophagy-related proteins induced by two stress exposures and restored retrograde axonal transport and neurotransmitter release. Our findings suggested that G11-5 exhibited an obvious antidepressant through TSPO-mediated mitophagy pathway.


Assuntos
Amidas/farmacologia , Antidepressivos/farmacologia , Benzodioxóis/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Receptores de GABA/metabolismo , Estresse Psicológico/tratamento farmacológico , Animais , Depressão/tratamento farmacológico , Depressão/metabolismo , Depressão/patologia , Depressão/psicologia , Teste de Labirinto em Cruz Elevado , Desamparo Aprendido , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Mitofagia/efeitos dos fármacos , Piper/química , Distribuição Aleatória , Transdução de Sinais/efeitos dos fármacos , Derrota Social , Estresse Psicológico/metabolismo , Estresse Psicológico/patologia , Estresse Psicológico/psicologia , Natação
15.
J Ethnopharmacol ; 246: 112212, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31494200

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: ANNAO tablets derive from Chinese classical prescriptions of Angong Niuhuang Pills with modified compositions, which have been singly or combined used for stoke associated neurological disorders. However the underlying mechanism is not yet well-defined, the present study investigated its anti-ischemic effects in rat middle cerebral artery occlusion (MCAO) model and focused on mitochondrial quality control. MATERIALS AND METHODS: Rats were subjected to 2 h of brain ischemia followed by 1 day or up to 7 days of reperfusion. Vehicle, ANNAO tablets or Edaravone were given at 1h after the start of reperfusion for 1 day or successive 7 days in MCAO rats. For the behavior assessment, Longa test and modified Neurological Severity Scores (m NSS) test were performed. Following the behavioral assessment, we assessed the protein expressions related to mitochondrial function. Moreover, we also assessed the neuroprotective effects of ANNAO tablets by immunohistochemical analysis. RESULTS: Compared with sham rats, ANNAO tablets improved the behavioral performance and decreased the infarction volume in the MCAO rats. Western blotting results showed that ANNAO tablets altered the expression level of multiple proteins related to mitochondrial function, elevated the ratio of Bcl-2/Bax and inhibited the apoptosis. Additionally, ANNAO tablets increased the number of NeuN positive neurons. CONCLUSIONS: The obtained data demonstrated that ANNAO tablets exhibited an obvious anti-cerebral ischemia-reperfusion effect, which could be attributed to the improvement of mitochondrial quality control.


Assuntos
Infarto da Artéria Cerebral Média/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Masculino , Mitocôndrias/fisiologia , Dinâmica Mitocondrial/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Ratos Sprague-Dawley , Comprimidos
16.
Acta Pharmacol Sin ; 40(4): 441-450, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29991712

RESUMO

Neuroprotection targeting mitochondrial dysfunction has been proposed as an important therapeutic strategy for Parkinson's disease. Ganoderma lucidum (GL) has emerged as a novel agent that protects neurons from oxidative stress. However, the detailed mechanisms underlying GL-induced neuroprotection have not been documented. In this study, we investigated the neuroprotective effects of GL extract (GLE) and the underlying mechanisms in the classic MPTP(1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced mouse model of PD. Mice were injected with MPTP to induce parkinsonism. Then the mice were administered GLE (400 mg kg-1 d-1, ig) for 4 weeks. We observed that GLE administration significantly improved locomotor performance and increased tyrosine hydroxylase expression in the substantia nigra pars compact (SNpc) of MPTP-treated mice. In in vitro study, treatment of neuroblastoma neuro-2a cells with 1-methyl-4-phenylpyridinium (MPP+, 1 mmol/L) caused mitochondrial membrane potential collapse, radical oxygen species accumulation, and ATP depletion. Application of GLE (800 µg/mL) protected neuroblastoma neuro-2a cells against MPP+ insult. Application of GLE also improved mitochondrial movement dysfunction in cultured primary mesencephalic neurons. In addition, GLE counteracted the decline in NIX (also called BNIP3L) expression and increase in the LC3-II/LC3-I ratio evoked by MPP+. Moreover, GLE reactivated MPP+-inhibited AMPK, mTOR, and ULK1. Similarly, GLE was sufficient to counteract MPP+-induced inhibition of PINK1 and Parkin expression. GLE suppressed MPP+-induced cytochrome C release and activation of caspase-3 and caspase-9. In summary, our results provide evidence that GLE ameliorates parkinsonism pathology via regulating mitochondrial function, autophagy, and apoptosis, which may involve the activation of both the AMPK/mTOR and PINK1/Parkin signaling pathway.


Assuntos
Apoptose/efeitos dos fármacos , Produtos Biológicos/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Transtornos Parkinsonianos/prevenção & controle , Reishi/química , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Estresse Oxidativo/efeitos dos fármacos , Transtornos Parkinsonianos/induzido quimicamente
17.
Oncotarget ; 8(37): 61193-61202, 2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-28977856

RESUMO

Deficits in mitochondrial function is a critical inducement in the major pathways that drive neuronal cell death in ischemic process particularly. Drugs target to improve the mitochondrial function may be a feasible therapeutic choice in treatment with ischemic diseases. In the present study, we investigated whether 5-(4-hydroxy-3-dimethoxybenzylidene)-2-thioxo-4-thiazolidinone (RD-1), a compound derived from rhodanine, could protect against ischemic neuronal damage via improving mitochondrial function. We tested the neuroprotective effect of RD-1 both in rats modeled by middle cerebral artery occlusion reperfusion in vivo and in primary cortical neurons subjected to hypoxia/reperfusion injury in vitro. Results showed that treatment with RD-1 for 14 days remarkably reduced infarct size, decreased neurological deficit score and accelerated the recovery of somatosensory function in vivo. Meanwhile, RD-1 also increased the cellular viability after 48 h treatment in vitro. In addition, RD-1 protected the primary cortical neurons against mitochondrial damage as evidenced by stabilizing the mitochondrial membrane potential and reducing the overproduction of reactive oxygen species. Furthermore, hypoxia/reperfusion injury induced damaged mitochondrial axonal transport and consequently neurotransmitter release disorder, which were ameliorated by RD-1 treatment. Besides, RD-1 inhibited the downregulation of proteins related with mitochondrial transport and neurotransmitter release induced by ischemic injury both in vivo and in vitro. The obtained data demonstrated the neuroprotective effect of RD-1 and the involved mechanisms were partially attributed to the improvement in mitochondrial function and the synaptic activity. Our study indicated that RD-1 may be a potential therapeutic drug for the ischemic stroke therapy.

18.
Neuropsychiatr Dis Treat ; 13: 927-935, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28392696

RESUMO

BACKGROUND: Compound porcine cerebroside and ganglioside injection (CPCGI) is a neurotrophic drug used clinically to treat certain functional disorders of brain. Despite its extensive usage throughout China, the exact mechanistic targets of CPCGI are unknown. This study was carried out to investigate the protective effect of CPCGI against ischemic neuronal damage in rats with middle cerebral artery occlusion (MCAO) reperfusion injury and to investigate the neuroprotective mechanisms of CPCGI. MATERIALS AND METHODS: Adult male Sprague-Dawley rats were subjected to MCAO surgery for 2 hours followed by reperfusion. The rats were administered CPCGI once a day for 14 days after reperfusion, and behavioral tests were performed 1, 3, 7, and 14 days post MCAO. Hematoxylin-eosin staining was used to measure infarct volume, and immunohistochemical analysis was performed to determine the number of NeuN-positive neurons in the ischemic cortex penumbra. Finally, the relative expression levels of proteins associated with apoptosis (Bcl-2, Bax, and GADD45α), synaptic function (Synaptophysin, SNAP25, Syntaxin, and Complexin-1/2), and mitochondrial function (KIFC2 and UCP3) were determined by Western blot. RESULTS: CPCGI treatment reduced infarct size, decreased neurological deficit scores, and accelerated the recovery of somatosensory function 14 days after MCAO. In addition, CPCGI reduced the loss of NeuN-positive cells in the ischemic cortex penumbra. In the ischemic cortex, CPCGI treatment decreased GADD45α expression, increased the Bcl-2/Bax ratio, augmented Synaptophysin, SNAP25, and Complexin-1/2 expression, and increased the expression of KIFC2 and UCP3 compared with sham rats 14 days after MCAO reperfusion injury. CONCLUSION: CPCGI displays neuroprotective properties in rats subjected to MCAO injury by inhibiting apoptosis and improving synaptic and mitochondrial function.

19.
Psychiatry Res ; 245: 141-147, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27543827

RESUMO

Low response rate was witnessed with the present monoaminergic based antidepressants, urging a need for new therapeutic target identification. Accumulated evidences strongly suggest that mitochondrial deficit is implicated in major depression and 18kDa translocator protein (TSPO) plays an important role in regulating mitochondrial function. However the changes of TSPO and TSPO mediated mitophagy pathway in the depressive brain is unclear. In present study, a well validated animal model of depression, learned helplessness (LH), was employed to investigate the relevant changes. Significant behavioral changes were observed in the LH mice. Results showed that TSPO and other mitophagy related proteins, such as VDAC1, Pink1 and Beclin1 were significantly decreased by LH challenge. Moreover, KIFC2, relevant to the mitochondrial transport and Snap25, relevant to neurotransmitter vesicle release, were also obviously down-regulated in the LH mice, which further rendered supportive evidence for the existing mitochondrial dysfunction in LH mice. Present results demonstrated that LH induced depressive symptoms and affected TSPO-mediated mitophagy pathway, indicating a potential target candidate for depression treatment.


Assuntos
Encéfalo/metabolismo , Transtorno Depressivo Maior/genética , Expressão Gênica/genética , Desamparo Aprendido , Mitofagia/genética , Receptores de GABA/genética , Transdução de Sinais/genética , Animais , Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Regulação para Baixo/genética , Masculino , Camundongos , Camundongos Endogâmicos ICR , Canal de Ânion 1 Dependente de Voltagem , Canais de Ânion Dependentes de Voltagem/genética
20.
J Clin Hypertens (Greenwich) ; 18(12): 1279-1283, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27271472

RESUMO

This study validated the RisingSun RS-651 blood pressure (BP) monitor based on auscultation in adults according to the American National Standards Institute/Association for the Advancement of Medical Instrumentation/International Organization for Standardization (ANSI/AAMI/ISO) 81060-2:2013 standard. The RS-651 device was evaluated in a study of 97 participants. The same arm simultaneous method, as defined in the ANSI/AAMI/ISO standard, was used. The mean differences±standard deviation for criterion 1 were 0.8±2.3 mm Hg for systolic BP (SBP) and -0.1±2.9 mm Hg for diastolic BP (DBP). Analysis for criterion 2 resulted in values of 0.8±1.5 mm Hg for SBP and -0.1±2.1 mm Hg for DBP. All of the data fulfilled the ANSI/AAMI/ISO 81060-2:2013 standard requirements to pass the validation. The RisingSun RS-651 device can be recommended for both clinical and self/home use in adults according to the ANSI/AAMI/ISO 81060-2:2013 standard.


Assuntos
Determinação da Pressão Arterial/instrumentação , Monitores de Pressão Arterial/normas , Hipertensão/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Auscultação , Determinação da Pressão Arterial/classificação , Desenho de Equipamento , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...